Friday, November 29, 2019

The Resolute Man Finds a Way free essay sample

There are few events more conducive to making a 14 year old boy have an anxiety attack than putting him on a pitcher’s mound in a game in front of 30 of his very attractive female peers. I learned this lesson the hard way during my first 9th grade high school baseball game, pitching poorly and getting pulled from the game just an inning into the contest. Unfortunately, my first poor showing turned into a string of losses that eventually led to me getting cut from the team after the season. Feeling extremely depressed and discouraged after losing my spot on the team, I began to wonder where my place in the sport, and ultimately in life, was. My infatuation with baseball started off as nothing more than a way for me to make friends in a new community but eventually grew into something much more: a love affair that consumed my life, created my identity, and served as a physical outlet for my mental and emotional unrest. We will write a custom essay sample on The Resolute Man Finds a Way or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page I knew that if I didn’t want to lose my first true love I’d have to extend my playing days beyond the high school field, where I was no longer given a chance, and into the collegiate arena. Thus, I developed a rigorous and meticulous plan to somehow earn an offer to play college baseball. The cold, iron weight room forged out an indifference to pain that helped me push through obstacles that I never thought possible. Running at the track at night forced me to focus on the next step, always striving to give 100% as I legged out the last few yards of a sprint. My favorite part of training would be long-tossing in the 300 yard open field behind my school. Over the months my high-arcing, maximum effort tosses stretched farther and farther, representing the progress I was making as both a pitcher and person as I tossed aside people’s assumptions about my skills and broke through new plateaus of confidence and skill. After a few years and many long days of practice, I found myself back on the mound in the position I had coveted for months: a showcase where I had the chance to perform in front of 100 college coaches and finally prove myself. Digging deep and utilizing all of the skills I had gained over the past few years, I gave up no runs and stuck out 3 in my two innings of work. At the end of the day, I had 6 college offers from high academic schools and was the happiest kid in the world. No matter what future games I pitch, win or lose, there will never be one more important than the metaphorical one that I’ve played against myself these past few years, one where I can say that I’m stepping off the mound with a label I’ve proudly created for myself: I am a winner, and that is a distinction which can never be taken from me.

Monday, November 25, 2019

Teacher Merit Pay Benefits and Disadvantages

Teacher Merit Pay Benefits and Disadvantages Teaching unions around the United States are lessening their opposition to merit pay for teachers and finding new ways to experiment with the concept, passionate reactions erupted from teachers everywhere. So, what exactly are the pros and cons of paying teachers differently based on the results they produce in the classroom? The issue is complex. In fact, it has been debated for over 40 years in the world of education. The National Education Association (NEA) adamantly opposes merit pay, but is it an idea whose time has come? The Pros Americans value hard work and results, and our capitalist system hinges upon rewarding such results. Most professions offer bonuses and salary increases to exemplary employees. Why should teaching be the exception? The fact that a sloppy teacher and a dedicated teacher earn the same salary just doesn’t sit right with most people.Incentivized teachers will work harder and produce better results. What motivation do teachers currently have to go above and beyond the jobs basic requirements? The simple possibility of extra cash would most likely translate into smarter teaching and better results for our children.Merit Pay programs will help recruit and retain the nation’s brightest minds. It’s the odd teacher who hasn’t considered leaving the classroom and entering the corporate workplace for the twin benefits of less hassle and more money potential. Particularly intelligent and effective teachers might reconsider leaving the profession if they felt that their extraordinary efforts were being recognized in their paychecks. Teachers are already underpaid. Merit Pay would help address this injustice. Teaching is due for a renaissance of respect in this country. How better to reflect the esteemed way we feel about educators than through paying them more? And the highest performing teachers should be first in line for this financial recognition.We are in the middle of a teaching shortage. Merit pay would inspire potential teachers to give the profession more consideration as a viable career choice, rather than a personal sacrifice for the higher good. By tying teaching salaries to performance, the profession would look more modern and credible, thus attracting young college graduates to the classroom.With American schools in crisis, shouldn’t we be open to trying almost anything new in the hopes of making a change? If the old ways of running schools and motivating teachers aren’t working, perhaps it’s time to think outside of the box and try Merit Pay. In a time of crisis, no valid ide as should be quickly denied as a possible solution. The Cons Virtually everyone agrees that designing and monitoring a Merit Pay program would be a bureaucratic nightmare of almost epic proportions. Many major questions would have to be adequately answered before educators could even consider implementing Merit Pay for teachers. Such deliberations would inevitably take away from our real goal which is to focus on the students and give them the best education possible.Goodwill and cooperation among teachers will be compromised. In places that have previously tried variations of Merit Pay, the results have often been unpleasant and counter-productive competition between teachers. Where teachers once worked as a team and shared solutions cooperatively, Merit Pay can make teachers adopt a more â€Å"I’m out for myself only† attitude. This would be disastrous for our students, no doubt.Success is difficult, if not impossible, to define and measure. No Child Left Behind (NCLB) has already proven how the various unleveled playing fields in the American education system inherently set up a wide variety of standards and expectations. Consider the diverse needs of English Language Learners, Special Education Students, and low-income neighborhoods, and you’ll see why it would be opening a messy can of worms to define standards of success for American schools when the stakes are cash in the pockets of real teachers. Opponents to Merit Pay argue that a better solution to the current educational crisis is to pay all teachers more. Rather than design and regulate a messy Merit Pay program, why not simply pay teachers what they are already worth?High-stakes Merit Pay systems would inevitably encourage dishonesty and corruption. Educators would be financially motivated to lie about testing and results. Teachers might have legitimate suspicions of principal favoritism. Complaints and lawsuits would abound. Again, all of these messy morality issues serve only to distract from the needs of our students who simply need our energies and attention to learn to read and succeed in the world.​ So what do you think now? With issues as complicated and evocative as Merit Pay, ones position can be naturally nuanced. In the big picture, all that really matters is the learning that happens with our students when the rubber meets the road in our classrooms. After all, theres not a teacher in the world who entered the profession for the money. Edited By:  Janelle Cox

Friday, November 22, 2019

Frequency Response of Netwroks (Electronic Engineering) Lab Report

Frequency Response of Netwroks (Electronic Engineering) - Lab Report Example Current was determined by monitoring the voltage across 100 ? resistor. The CRO was used to record the current and voltage waveforms. The above procedure was repeated for the series connection of a resistor and inductor. Voltage across the inductor was measured at 100 Hz. The frequency response of the RC low-pass filter was measured over the frequency range 100 Hz to 100 kHz. At R = 1 k?, C = 0.01 Â µF, the attenuation at 15 to 20 frequencies were logarithmically recorded over this range. This procedure was repeated with R= 10 k?. The LF oscillator was connected to the RLC series circuit and with R=100 ? the voltage across the capacitor and inductor, and current through the circuit at frequencies between 1 kHz and 100 kHz determined by measuring the voltage across the series resistor. The band-pass filter circuit was constructed and voltages Vo and Vi measured over the range of frequencies 1kHz to 100 kHz. The band-stop filter circuit was also constructed and Vo and Vi again measure d over the range of frequencies 1kHz to 100kHz. A Twin-T filter was then constructed with R1 = R2 = 100 ? and C1=C2=0.01Â µF. ... 1000 4.673 0.301 0.00301 1552.492 0.000644 2000 4.627 0.561 0.00561 824.7772 0.001212 3000 4.551 0.83 0.0083 548.3133 0.001824 4000 4.47 1.093 0.01093 408.9661 0.002445 5000 4.37 1.32 0.0132 331.0606 0.003021 6000 4.253 1.596 0.01596 266.4787 0.003753 7000 4.11 1.802 0.01802 228.0799 0.004384 8000 3.962 1.989 0.01989 199.1956 0.00502 9000 3.84 2.123 0.02123 180.8761 0.005529 10000 3.701 2.268 0.02268 163.1834 0.006128 Figure1 The capacitance is the gradient of the line which is 6?10-4 F By calculation C= 1/2?f Xc and at f =10000 Hz and Xc =163.1834 ? then, C = 1 / 2*?*10000*163.1834 = 0.4126 F which reasonably agrees with the experimental values. The small difference between the calculated value and the measured value may be due to inaccurate readings or as a result of rounded figures. 2) Measuring VL and VR in figure6 with R=100 ? and C=0.01uf Table.2 ? (Hz) VL (v) VR (V) I (A) XL (?) 1/XL 100 1.443 4.379 0.04379 32.95273 0.030347 1000 0.675 4.36 0.0436 15.48165 0.064593 2000 1.299 4.23 0.0423 30.70922 0.032564 3000 1.867 4.028 0.04028 46.35055 0.021575 4000 2.317 3.791 0.03791 61.11844 0.016362 5000 2.709 3.53 0.0353 76.74221 0.013031 6000 3.033 3.273 0.03273 92.66728 0.010791 7000 3.273 2.907 0.02907 112.5903 0.008882 8000 3.328 2.705 0.02705 123.0314 0.008128 9000 3.488 2.496 0.02496 139.7436 0.007156 10000 3.592 2.32 0.0232 154.8276 0.006459 Figure 2 From the gradient, the inductance obtained to be 15.6 mH The inductive reactance XL at 100Hz is XL=2fL=2?3.14?100?15.6?10-3= 9.8 ? At f = 100 Hz from the table above XL = 32.95273 ? The difference is due to experimental errors and errors in reading of results. 3) Measuring Vo , Vi , the gain and calculating the frequency response Table.3 ? (HZ) Vi (V) VO (V) Gain Gain in dBs 100 4.634 4.638 1.000863 0.007494 160

Wednesday, November 20, 2019

Multinational Enterprises In Asian Development Case Study

Multinational Enterprises In Asian Development - Case Study Example The research will review the trends and expansionist strategies employed by multinational enterprises from these nations and evaluate how they managed to attain successes on the global level. Japanese Businesses The Japanese European Trade Organisation (JETRO) studied a number of things about the expansion if Japanese businesses into Europe (Sachwald, 1995). They identified five main motives for the expansion of Japanese businesses into Europe. First of all, Japanese businesses seeking to expand into Europe for production reasons. Geographically, Japan has not been a very rich island in terms of natural resources. As such, their expansionist drives into foreign nations included the desire to acquire much needed raw materials. Thus, the establishment of foreign companies enabled them to establish production systems with their technology and capital and produce at points close to the customers that they previously exported to. Secondly, the cost of energy and electricity has been tradi tionally high. Japanese expansionist ideology was to make use of cheap electricity and energy costs. Again, Japan has always been an overpopulated island. Due to that, land costs are generally higher. The expansion into foreign lands enabled Japanese businesses to economize and save significantly on rent. Other costs like pollution and transport costs were significantly lower in other parts of the world. Thus, Japanese businesses expanded to foreign lands to take advantage of these production-related advantages. Secondly, Japanese businesses moved to different parts of the world in order to develop new markets. In the 1970s, Japanese businesses had exported large volumes of products to people in different parts of the world.

Monday, November 18, 2019

Alzeimer's Disease Research Paper Example | Topics and Well Written Essays - 250 words

Alzeimer's Disease - Research Paper Example Alzheimer’s disease, also known as Senile Dementia of the Alzheimer Type is a brain complication, which results in deteriorated brain functionality (American Health Assistance Foundation, 2011). It is the most reported case of dementia complication and develops gradually in a victim. The main effects of the disease are a permanent damage on neurons, which leads to intellectual incapacitation through loss of memory and rationality. As the disease develops in a person, it impairs brain related functionality leading to poor judgment and rationale in making decisions (Nordqvist, 2009), (American Health Assistance Foundation, 2011) The two major causes of Alzheimer’s disease are family history and age (Crystal, n.d.). Although developing Alzheimer’s disease is not a part of normal aging (Crystal, n.d.), it has been proven that age increases the risk of developing this disease (Crystal, n.d.). Family history also plays a major role in Alzheimer’s disease and having a close blood relative such as mother, sister, a brother; etc who has developed Alzheimer’s disease increases the risk of developing this disease. Other unproven causes of this disease include a history of head trauma, long-standing high blood pressure, and female gender (Nordqvist, 2009). There are two major types of Alzheimer’s disease, which have been identified according to the age of the patients: Early Onset Alzheimer’s not very common and is said to occur when a patient displays symptoms of the disease before reaching the age of 60 (Kantor, 2010). Late Onset Alzheimer’s is however very common and is said to occur when a patient aged 60 years or higher displays symptoms of the disease. The two types are both fatal (Kantor, 2010). The basic symptoms of Alzheimer’s disease are language and memory problems (forgetting familiar names, words, routes etc), flat moods, and personality changes (Kantor, 2010). A more in-depth discussion about the

Saturday, November 16, 2019

Value Package Introduction in COS

Value Package Introduction in COS Abstract VPI (Value Package Introduction) was one of the core programs in Cummins Operating System (COS). VPI was the process by which the Company defined, designed, developed and introduced high quality Value Packages for customers. One of the key processes in a VPI program was to identify part failures. When a part failure was identified, it was transported to other plant locations. A delay in delivery time from one plant location to another impeded the diagnosis of a part and resulted in a postponement of a critical resolution and subsequent validation. As a proven methodology, customer focused Six Sigma tools were utilized for this project to quantify the performance of this process. Six Sigma was a data-driven approach which was designed to eliminate defects in the process. The project goal was to identify root causes of process variation and reduce the number of days it was taking for a part to move from point of failure to the component engineer for evaluation. The average number of da ys at the start of this project was 137. The goal was to reduce this by 50%. The benefits of performing this project was a reduction in the time it takes for parts to move which impacted the ability to analyze and fix problems in a timely manner and allowed the part to be improved or modified and put back on the engine for further testing. VPI Failed Parts Movement Between Locations Introduction VPI (Value Package Introduction) was one of the core programs in Cummins Operating System (COS). VPI was the process by which the Company defined, designed, developed and introduced high quality Value Packages for customers. The complete VPI package allowed Cummins to continuously improve the product(s) delivered to customers. This project was conducted in an effort to increase the value of these packages. By improving the process of moving parts from one location to another, Cummins has benefited in both cycle time and cost. VPI included all the elements of products which involved services and information that was delivered to the end-user customer. These products included: oil, filters, generator sets, parts, business management tools/software, engines, electronic features and controls, service tools, reliability, durability, packaging, safety and environmental compliance, appearance, operator friendliness, integration in the application, robust design, leak-proof components, ease of service and maintenance, fuel economy, rebuild cost, price, and diagnostic software. These were key factors of customer satisfaction that allowed Cummins to remain competitive and provide quality parts and services to the end customers. This process was essential in surviving among competitors. Statement of the Problem One of the key processes in a VPI program was to identify and resolve part failures. In order to do this in a timely manner, parts needed to travel quickly from the point of failure to the component engineers for diagnosis. Failures were identified at Cummins Technical Center during engine testing. The failed parts were then sent to one of two other locations, Cummins Engine Plant (Cummins Emission Solutions) or the Fuel Systems Plant, where they were to be delivered to the appropriate engineer for diagnosis and part engineering changes. A delay in the diagnosis of a failed part meant a delay in the resolution of the problem and subsequent engine testing. The ideal situation was for a part failure to be identified by the test cell technician, delivered to the engineer, diagnosed by the engineer, and the part redesigned for further testing on the engine. When this did not occur timely, the failed part did not reach the engine again for a sufficient amount of testing. The problem was that parts were either taking a very long time to get into the engineers hands, or the parts were lost. Engines require a pre-determined amount of testing time to identify potential engine failures and associated risks to the customer and the Company. As a result, the opportunity to continually improve parts and processes was missed. Through the use of customer focused six sigma tools this process improved the ability to solve customer problems and achieve company targets. Investigation was required to determine the most efficient process for the transfer of failed parts between different sites within Cummins. Significance of the Problem This process was important in solving part failures. Timely transfer of parts to the correct engineer for analysis reduced the amount of time for issue correction and improved the performance of the engines that were sold to customers. This package allowed Cummins to continuously improve the process and reduce cycle time and cost. This project involved the transportation of VPI failed parts from the point of failure to the appropriate component engineer. The improvements made during this project ensured that parts were received by the engineers in a timely manner which allowed further testing of the re-engineered failed parts. Statement of the Purpose The process of identifying part failures and delivering them to the appropriate component engineer was essential in diagnosing problems and correcting them. Personnel were either not trained in the problem identification area or were unaware of the impact that their work had on the entire process. Communication between the test cell engineers whom identify part failures was important within two areas. First, it was critical that the engineer responsible for the part was notified and secondly, the Failed Parts Analyst (FPA) had to be notified in order to know when to pick up the part for shipping. The partnership between the test cell engineer and the other two areas was a fundamental part of this process in order for it to be successful. Other factors that contributed to the time delay in part failure identification and delivery time was vacation coverage of key employees and training of shipping and delivery personnel. The average number of days for a part to be removed from the tes t cell engine and delivered to the appropriate design engineer was 137 days. Based on the logistics of the locations where the parts were being delivered, this process was improved to be accomplished in less time. The purpose of this project was to reduce the amount of time it was taking for this process to occur. The benefits of performing this project resulted in a reduction in the time it was taking for parts to move which impacted the ability to analyze and fix problems and allowed the part to be improved or modified and put back on the engine for further testing. The improvements derived from this project can be applied to similar processes throughout the multiple business units. Definition of Terms VPI- Value Package Introduction was a program utilized by Cummins in which new products were introduced. It included all the elements of creating a new product such as design, engineering, final product production, etc. COS- Cummins Operating System; the system of Cummins operations which were standard throughout the Company. It identified the manner in which Cummins operated. CE matrix tool that was used to prioritize input variables against customer requirements. FPA- Failed Parts Analyst ; the FPA was the person responsible for retrieving failed parts from the test cells, determining the correct engineer to whom these failed parts were to be delivered to, and prepared the parts for shipping to the appropriate location. SPC- Statistical Process Control; SPC was an application of statistical methods utilized in the monitoring and control of the process. TBE- Time Between Events; In the context of this paper, TBE represented the number of opportunities that a failure had of occurring between daily runs. McParts- Software application program which tracked component progress through the system. It provided a time line from the time a part was entered into the system until it was closed out. Assumptions The assumption was made that all participants in the project were experienced with the software application program that was utilized. Delimitations Only failed parts associated with the Value Package Introduction program were included in the scope of this project. Additionally, only the heavy duty engine family was incorporated. The light duty diesel and mid-range engine families were excluded. This project encompassed three locations in Southern Indiana. The focus of this project was on delivery time and did not include packaging issues. It also focused on transportation and excluded database functionality. Veteran employees were selected for collecting data. The variable of interest considered was delivery time. Data collection techniques were limited to first shift only. The project focusd on redesigning an existing process and did not include the possibility of developing a new theory. Limitations The methodology used for this project did not include automation of the process as a step. RFID was a more attractive way to resolve this problem; however, it was not economically feasible at the time. The population was limited since the parts that were observed were limited to heavy duty engines which reduced variations in the size and volume of parts. Time constraints and resource availability was an issue. Due to team members residing at several locations, meeting scheduling was more problematic. Additionally, coordinating team meetings was a challenge because room availability was limited. Review of Literature Introduction The scope of this literature review was intended to evaluate articles on failed parts within Value Package Introduction (VPI) programs. However, although quality design for customers is widely utilized, the literature on Value Package Introduction was rather scarce. VPI was a business process that companies used to define, design, develop, and introduce high quality packages for customers. VPI included all the elements of products which involved services and information that was delivered to the end-user customer. One of the key processes in a VPI program was to problem -solve part failures, which was the direction this literature review traveled. Methods This literature review focused on part/process failures and improvements. The methods used in gathering reading materials for this literature review involved the use of the Purdue University libraries: Academic Search Premier, Readers Guide, and Omni file FT Mega library. Supplementary investigation was conducted on-line where many resources and leads to reference material were found. All of the references cited are from 2005 to present with the exception of a Chrysler article dated 2004 which was an interesting reference discussing the use of third party logistic centers, a journal article from 1991 that explains the term, cost of quality, which is used throughout this literature review, and two reference manuals published by AIAG which contain regulations for ISO 9001:2000 and the TS16949 standards. Keywords used during researching included terms such as scrap, rework, failed parts and logistics. Literature Review Benchmarking. Two articles, authored by Haftl (2007), concentrated on the mixture of metrics needed to optimize overall performance. Some of these metrics included completion rates, scrap and rework, machine uptime, machine cycle time and first pass percentages. â€Å"According to the 2006 American Machinist Benchmarking survey, leading machine shops in the United States are producing, on average, more than four times the number of units produced by other non-benchmarked shops. Also worth noting is that they also reduced the cost of scrap and rework more than four times.† (Haft, 2007, p.28). The benchmark shops showed greater improvement than other machine shops. â€Å"The benchmark shops cut scrap and rework costs to 4.6 percent of sales in 2006 from 6.6 percent three years ago, and all other shops went to 7.8 percent of their sales in 2006 from 9.3 percent three years ago† (Haftl, 2007, p.28). The successful reduction of scrap and rework costs by the benchmark shops w ere contributed to several factors. First, training was provided to employees and leadership seminars were held. Secondly, these shops practiced lean manufacturing and lastly, they had specific programs which directly addressed scrap and rework. Whirlpool, one of the nations leading manufacturers of household appliances, had used benchmarking as a means of finding out how they rated in comparison to their competitors. They benchmarked their primary competitor, General Electric. As a result, they discovered what improvements they could make that could be managed at a low investment. The improvement processes were especially useful and applied in existing strengths of the company. They rolled out a new sales and operating plan based on customer requirements (Trebilcock, 2004). Quality. An overall theme contained in all of the articles reviewed was that of quality. In Staffs review (2008), hecontended that regardless of a companys size, quality was critical in maintaining a competitive advantage and retaining customers. The Quality Leadership 100 is a list of the top 100 manufacturers who demonstrated excellence in operations. The results were based on criteria such as scrap and rework as a percentage of sales, warranty costs, rejected parts per million, the contribution of quality to profitability, and share holder value. Over 800 manufacturers participated in this survey. The top three manufacturers for 2008 were listed as: #1 Advanced Instrument Development, Inc. located in Melrose Park, IL, #2 Toyota Motor Manufacturing in Georgetown, KY., and Utillmaster Corp. Wakarusa, IN. (Staff, 2008). In an article written by Cokins (2006) the author stressed that quality was an important factor in improving profitability. He informed the reader that quality manage ment techniques assisted in identifying waste and generating problem solving approaches. One of the problems he cited regarding quality was that it was not often measured with the appropriate measuring tools. As a result, organizations could not easily quantify the benefits in financial terms. Obstacles that affected quality was the use of traditional accounting practices. The financial data was not captured in a format that could easily be applied in decision making. Because quantifiable measures lacked a price base to compare the benefits, management often perceived process improvements as being risky. Cost of Quality (COQ), was the cost associated with identifying, avoiding and making corrections to defects and errors. It represented the difference between actual costs and reduced costs as a result of identifying and fixing defects or errors. In Chens report (ChenAdam,1991), the authors continued to breakdown cost of quality into two parts, the cost of control and the cost of failure. They explained that cost of control was the most easily quantifiable because it included prevention and measures to keep defects from occurring. Cost of control had the capability to detect defects before a product was shipped to a customer. Control costs included inspection, quality control labor costs and inspection equipment costs. Costs of failure included internal and external failures and were harder to calculate. Internal failures resulted in scrap and rework, while external failures, resulted in warranty claims, liability and hidden costs such as loss of customers (ChenAdam, 1991). Because co st of control and cost of failure were related, managing these two element reduced part failures and lowered the costs associated with scrap and rework. Tsarouhas (2009, p.551) reiterated in his article on engineering and system safety , that â€Å"failures arising from human errors and raw material components account for 25.06% and 5.35%, respectively, which is about 1/3 of all failures†¦.†. â€Å"A rule of thumb is that the nearer the failure is to the end-user, the more expensive it is to correct† (Cokins, 2006, p. 47). Identification of failed parts was a key process of Value Package Introduction and key to identifying and correcting failures before they reached the customer. A delay in the diagnosis of a defective part resulted in the delay or a miss to the implementation of a critical fix and subsequent validation. When a delay occurred, the opportunity to continually improve parts and processes was not achieved. In a journal article written by Savage Son ( 2009), the authors affirmed that effective design relied on quality and reliability. Quality, they lamented, was the adherence to specifications required by the customer. Dependability of a process included mechanical reliability (hard failures) and performance reliability (soft failures). These two types of failures occurred when performance measures failed to meet critical specifications (Savage Son, 2009). Tools and specifications. The remaining articles discussed in this literature review focused on tools and specification that were utilized across the business environment. Specifications were important aspects of fulfilling a customers needs. Every company had its own unique way of operating, so businesses often had slightly different needs (Smith, Munro Bowen, 2004, p. 225). There were a number of tools that were available to help meet specific customer requirements. Quality control systems and identification of failed parts were among these tools. The application of statistical methods was used to make efforts at improvement more effective. Two common statistical methods that were used are those that were associated with statistical process control and process capability analysis. The goal of a process control system was to make predictions about the current and future state of a process. A process was said to be operating in statistical control when the only sources of variation were common causes (Down, Cvetkovski, Kerkstra Benham, 2005, p. 19). Common causes referred to sources of variation that over time produced a stable and repeatable distribution. When common causes yielded stable results then the output was considered to be predictable. SPC involved the use of control charts though an integrated software package. In an article by Douglas Fair (2008), he viewed product defects from the eyes of the consumer. He stated that to truly leverage SPC to create a competitive advantage, key characteristics had to be identified and monitored. (Fair, 2008) The means for monitoring some of these characteristics involved the use of control charts. An article written on integrated control charts, introduced control charts based on time-between-events (TBE).These charts were used in manufacturing companies to gauge the reliability of parts and service related applications. An event was defined as an occurrence of a defect and time referred to the amount of time bet ween the occurrence of defect events (Shamsuzzaman, Min, Ngee Haiyun, 2008). Process capability was determined by the variation that came from common causes. It represented the best performance of a process. Other writers deemed that one way to improve quality and achieve the best performance was to reduce product deviation. The parameters they used included the process mean and production run times (Tahera, Chan Ibrahim, 2007). Peter Roost (2007) favored the use of Computer-Aided Manufacturing tools as a means of improving quality. According to the author, CAM allowed a company to eliminate errors that cause rework and scrap, improved delivery times and simplified operations, and identified bottlenecks which assisted in efficient use of equipment (Roost, 2007). Other articles on optimization introduced a lot size modeling technique to identify defective products. Lot-sizing emphasized the number of units of an item that could be produced without interruption on the machinery used in the production process (Buscher Lindner, 2007). Conclusion In this literature review the importance of failed part identification was presented. The impact that quality and reliability had on this process was indicative of the value that proper measuring tools provide. Through the use of customer focused tools the identification and correction of failed parts was more easily accomplished and allowed a quicker resolution to customer problems. Benchmarking was discussed as a means of comparing outputs to those of competitors. Benchmarking was the first step in identifying areas requiring immediate attention. Haftl ( 2007) and Trebilcock (2004) devoted their articles to benchmarking and the impact it had on identifying areas demanding immediate improvement processes. Staff (2008), Cokins (2006), Tsarouhas (2009), and Savage Son (2009) spent more time discussing the critical requirement of quality and the affects it had on competitive advantage. Lastly, authors Smith, Munro Bowen (2004), Down (2005), Cvetkovski, Kerkstra Benham (2005), Fair ( 2008), Tahera, Chan Ibrahim (2007), and Roost (2007) discussed the different specifications and tools used in improving quality and identifying failures. The articles involving benchmarking were concise and easy to understand. A similarity among all of the articles is the census that quality was important in identifying and preventing failures and that competitive advantage cannot be obtained without it. Gaps identified through this literature review were the methods of making process improvements. Several of the authors had their own version of the best practice to use to improve performance. The articles on tools and specifications were very technical and discussed the different methods. In Fairs article,the author had a different perspective than any of the other articles reviewed. He wrote from the view of a consumer. Methodology This project built on existing research. Documentation was reviewed to determine the methodology used in previous process designs. The purpose of this project was to redesign the process flow to improve capability and eliminate non-value added time. Team members were selected based on their vested interest in the project. Each team member was a key stakeholder in the actual process. A random sampling technique was in which various components were tracked from point of failure to delivery. McParts, a software application program, was utilized to measure the amount of time that a component resided in any one area. Direct observation was also incorporated. A quantitative descriptive study was utilized in which numerical data was collected. The DMAIC method of Six Sigma was used. The steps involved in the DMAIC process were: Define project goals and the current process. Measure key aspects of the current process and collect relevant data. Analyze the data to determine cause-and-effect relationships and ensure that all factors are being considered. Improve the process based upon data analysis. Control the process through the creation and implementation of a project control plan. Process capability was established by conducting pilot samples from the population. In the Define stage, the â€Å"Y† variable objective statement was established- Reduce the amount of time it takes for a failed part to go from point of failure to the hands of the evaluating engineer by 50%. Next, a data collection plan was formed. The data was collected using the McParts component tracking system. Reports were run on the data to monitor part progression. In the second stage, Measure stage, a process map was created which identified all the potential inputs that affected the key outputs of the process. It also allowed people to illustrate what happened in the process. This step was useful in clarifying the scope of the project. Once the process map was completed, a Cause Effect matrix was developed. The Cause Effect matrix fed off of the process map and key customer requirements were then identified. These requirements were rank ordered and assigned a priority factor to each output (on a 1 to 10 scale). The process steps and materials were identified and each step was evaluated based on the score it received. A low score indicated that the input variable had a smaller effect on the output variable. Conversely, a high score indicated that changes to the input variable greatly affected the output variable and needed to be monitored. The next step involved creating a Fault Tree Analysis (FTA). The FTA was used to help identify the root causes associated with particular failures. A measurement system analysis was then conducted. Measurement tools such as McParts software application program as well as handling processes were reviewed. Next, an initial capability study was conducted to determine the current processes capability. Next, a design of experiment was established. The design of experiment entailed capturing data at various times throughout the project. Six months of data was obtained prior to the start of the project to show the current status. Once the project was initiated, data was collected on a continuous basis. Finally, once the project was complete, data was collected to determine stability and control of the process. Once the experiment was completed and the data was analyzed, a control plan was created to reduce variation in the process and identify process ownership. All of the above steps included process stakeholders and team members whom assisted in creating each output. Data/Findings Define. The purpose of this project was to reduce the number of days it was taking a part to move from point of failure to the component engineer for evaluation. Through the use of historical data, 2 of the 17 destination location for parts were identified as being problematic. The average number of days it was taking parts to be delivered to the component engineer at the Fuels Systems Plant and Cummins Engine Plant (Emission Solutions) location was 137 days. Both sites were located in the same city where the part failures were identified. Key people involved in performing the various functions in part failures and delivery were identified and interviewed. Measure. A process map was created documenting each step in the process including the inputs and outputs of each process (Figure 1). Once the process was documented, the sample size was determined. Of the 3,000 plus parts, those parts delivered to the two sites were extrapolated, resulting in a sample size of 37 parts. Parts were then tracked using a controlled database called McParts. From this point, key steps identified were utilized in creating a Cause Effect matrix. The CE matrix prioritized input variables against customer requirements. The Cause Effect matrix was used to understand the relationships between key process inputs and outputs. The inputs were rated by the customer in order of importance. The top 4 inputs identified as having the largest impact on quality were: Incident (part failure) origination, appropriate tagging of parts, failed parts analyst role, and addressing the tag part to the correct destination. The Cause Effect matrix allowed the team to narrow down the list and weight the evaluation criteria. The team then did a Fault Tree Analysis (FTA) on possible solutions. The FTA analyzed the effects of failures. The critical Xs involved the amount of time for filing an incident report and tagging parts, the amount of time it takes for the FPA to pick up the parts from the t est cells once the part failure is identified, and the staging and receiving process. Next, validation of the measurement system was conducted. An expert and 2 operators were selected to run a total of 10 queries in the McParts database using random dates. The results of the 2 operators as shown in figure 2 was then scored against each other (attribute agreement analysis within appraisers) and that of the experts (appraiser versus standard) The next logical step was to determine if there was a difference between the types of test performed and the length of time it was taking a part to be delivered to the appropriate component engineer. There were two types of tests performed, Dyno and Field tests. Figure 6 shows the median for field tests was a little better than the Dyno tests which came as a surprise because field test failures occur out in the field and occur at various locations. The Dyno tests are conducted at the Technical Center. The data drove further investigation into the outliers which showed that out of approximately 25 of these data points 8 were ECMs, 5 were sensors, 7 were wiring harnesses, 1 was an injector, and 4 were fuel line failures. These findings were consistent with the box plot on days to close by group name. ECMs, sensors, wiring harnesses, and fuel lines have the highest variance. The similarities and differences in the parts were reviewed and it was discovered that they are handled by differ ent groups once they reached FSP. The Controls group handled ECM, Sensors, and Wiring Harnesses. The XPI group handled Accumulators, Fuel lines, Fuel pumps, and Injectors. Drilling down further, another box plot was created to graphically depict any differences in the two different tests for both sites. The boxplot then showed that CES dyno had a much higher median and higher variability than CESs field tests and Fuel Systems dyno and field tests. (See figure 7 below) An IMR chart was created for dyno field tests without special causes. The data was stable but not normal. A test of equal variances was run for CES and FSP dyno and field tests. Based on Moods Median there is no difference in medians. This was likely due to small sample size in 3 of the 4 categories; however CES dyno test had a lot of variation and would require further investigation. An IMR chart and box plot was run on the data for XPI and Controls group at the Fuel Systems Plant. The data was stable but not normal. Next, a test of equal variance was run which showed that the variances were not equal. Thus, the null hypothesis that the variability of the two groups was equal was rejected. Next, attention was directed towards the Fuel Systems Plant. A boxplot was created from the data which showed there was a statistical difference between medians for FSP Control group and XPI. Through the solutions derived from the DMAIC methodology of Six Sigma, the project team had performed statistical analysis which proved that there would be benefits obtained by resolving the problems that were identified. The changes were implemented and a final capability study was performed on the data which showed an 84% reduction in the number of days it took a part to move from point of failure to the hands of the component engineer for evaluation. Improvements were documented and val idated by the team. To ensure that the performance of the process would be continually measured and the process remained stable and in control, a control plan was created and approved by the process owner responsible for the process. Conclusions/ Recommendations The goal of this project was to reduce the number of days it was taking to move a part from point of failure to the component engineer for evaluation. This goal was accomplished and final capability of the process shows a reduction in time by 84% from 137 days to 22 days.There were 4 critical problems identified during this project whic

Wednesday, November 13, 2019

A Pair Of Silk Stockings Essay example -- essays research papers

Kate Chopin again writes another short story with a way of getting the attention of the reader in a short period of time. â€Å"A Pair of Silk Stockings† is based in early to mid 1900's in a average town. Shops, a theater and such lies in the center of town. The author tells of a widowed mother that is not so well off, that discovers a sum of money and is taken away in her own shopping spree and perhaps her own dreams.   Ã‚  Ã‚  Ã‚  Ã‚  Mrs. Sommers is a middle aged timid mother of a handful of children, and is apparently not well to do anymore after her husband’s death; Not that she probably ever was, but more so than her luck would have it now. She is small framed with tattered old clothes, as if she hasn’t been able to purchase anything in quite awhile, nor would she knowing how...